Assignment 8.

This homework is due *Thursday*, October 23.

Collaboration is welcome. If you do collaborate, make sure to write/type your own paper and *credit your collaborators*. Your solutions should contain full proofs. Bare answers will not earn you much. Extra problems (if there are any) are due December 5.

1. Quick reminder

Simple Approximation Lemma. Let $f : E \to \mathbb{R}$ be measurable. Assume f is bounded on E. Then for each $\varepsilon > 0$, there are simple functions φ_{ε} , ψ_{ε} defined on E such that

 $\varphi_{\varepsilon} \leq f \leq \psi_{\varepsilon}$, and $0 \leq \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$ on E.

Egoroff's Theorem. Assume E has finite measure. Let $\{f_n\}$ be a sequence of measurable functions on E that converges pointwise on E to the real-valued function f. Then for each $\varepsilon > 0$, there is a closed set F contained in E for which

 $\{f_n\} \to f$ uniformly on F, and $m(E \setminus F) < \varepsilon$.

Lusin's Theorem. Let $f: E \to \mathbb{R}$ be measurable. Then for each $\varepsilon > 0$, there is a continuous function $g: \mathbb{R} \to \mathbb{R}$ and a closed set F contained in E such that

$$f = g$$
 on F , and $m(E \setminus F) < \varepsilon$.

Lebesgue integral of bounded function. For a bounded function f on a set E of finite measure, Lebesgue integral $\int_E f$ is defined as the common value of $\sup\{\int_E \varphi \mid \varphi \leq f, \varphi \text{ simple}\}$ and $\inf\{\int_E \psi \mid \psi \geq f, \psi \text{ simple}\}$, if the latter two are equal (which is guaranteed if f is measurable).

2. Exercises

- (1) (3.2.12) Let f be a bounded measurable function on E. Show that there are sequences of simple functions on E, $\{\varphi_n\}$ and $\{\psi_n\}$, such that $\{\varphi_n\}$ is increasing, $\{\psi_n\}$ is decreasing and each of these sequences converge to f uniformly on E. (*Hint:* Use Simple Approximation Lemma.)
- (2) (3.2.21-) For a sequence $\{f_n\}$ of measurable functions with common domain E, show that $\inf\{f_n\}$ and $\sup\{f_n\}$ are measurable. (*Hint:* Express sup and inf as limits of appropriate sequences; or directly use the definition of a measurable function.)
- (3) (3.3.26) Let E = [0, 1]. Lusin's theorem provides that a measurable $f : E \to \mathbb{R}$ equals to some continuous g at points of a set $F \subset E$. Must f itself be continuous at any point (as a function on E)?
- (4) (3.3.27) Show that the conclusion of Egoroff's theorem is false if we drop the assumption that the domain E has finite measure.(*Hint:* Take a function f that is zero on \mathbb{R}_{-} and nonzero on \mathbb{R}_{+} , consider $\{f(x-n)\}$.)

— see next page —

- (5) (3.3.31) Let $\{f_n\}$ be a sequence of measurable functions on E that converges to the real-valued f pointwise on E. Show that $E = E_0 \cup \bigcup_{k=1}^{\infty} E_k$, where all sets E_0, E_1, \ldots are measurable, and $\{f_n\}$ converges uniformly to f on each E_k if k > 0, and $m(E_0) = 0$.
- (6) (4.1.6+) Prove that a continuous function on a closed interval [a, b] is Riemann integrable. (*Hint:* Use uniform continuity to put an upper bound on the difference between upper and lower Darboux sums.)
- (7) (4.2.9) Let *E* have measure zero. Show that if *f* is a bounded function on *E*, then *f* is measurable and $\int_E f = 0$.
- (8) Let f be a simple function on a set E of finite measure. Then two definition of Lebesgue integral apply to f: the Lebesgue integral of a simple function, and the Legesgue integral of a bounded function. Show that these definitions agree on f, i.e. they both give the same value of $\int_E f$.

 $\mathbf{2}$